Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation.
نویسندگان
چکیده
Whole cell currents were recorded from rod and cone bipolar cells in a slice preparation of the rat retina. Use of the gramicidin D perforated-patch technique prevented loss of intracellular compounds. The recorded cells were identified morphologically by injection with Lucifer yellow. During the recordings, the cells were isolated synaptically by extracellular cobalt. To distinguish the gamma-aminobutyric acid (GABA) receptors pharmacologically, the GABAA receptor antagonist, bicuculline, and the GABAC receptor antagonist, 3-aminopropyl(methyl)phosphinic acid, were used. In all bipolar cells tested, application of GABA induced postsynaptic chloride currents that hyperpolarized the cells from their resting potential of about -40 mV. GABA was applied at different concentrations to allow for the different affinity of GABA at GABAA and GABAC receptors. At a GABA concentration of 25 microM, in the case of rod bipolar cells, approximately 70% of the current was found to be mediated by GABAC receptors. In the case of cone bipolar cells, only approximately 20% of the current was mediated by GABAC receptors. Furthermore, this GABAC-mediated fraction varied among the different morphological types of cone bipolar cells, supporting the hypothesis of distinct functional roles for the different types of cone bipolar cells. There is evidence that the efficacy of GABAC receptors is modulated by glutamate through metabotropic glutamate receptors. We tested this hypothesis by applying agonists of metabotropic glutamate receptors (mGluR)1/5 to rod bipolar cells. The specific agonist (+/-)-trans-azetidine-2, 4-dicarboxylic acid and the potent mGluR agonist quisqualic acid reduced the amplitude of the GABAC responses by 10-30%. This suggests a functional role for the modulation of GABAC receptors by the metabotropic glutamate receptors mGluR1/5.
منابع مشابه
Different combinations of GABAA and GABAC receptors confer distinct temporal properties to retinal synaptic responses.
This study addresses how gamma-aminobutyric acid-A(GABAA) and GABAC receptors confer distinct temporal properties to neuronal synaptic responses. The retina is a model system for the study of postsynaptic contributions to synaptic responses because GABAergic amacrine cells synapse onto neurons, which have different combinations of GABAA and GABAC receptors. It is not known, however, how GABAA v...
متن کاملDifferent types of retinal inhibition have distinct neurotransmitter release properties.
Neurotransmitter release varies between neurons due to differences in presynaptic mechanisms such as Ca(2+) sensitivity and timing. Retinal rod bipolar cells respond to brief dim illumination with prolonged glutamate release that is tuned by the differential release of GABA and glycine from amacrine cells in the inner retina. To test if differences among types of GABA and glycine release are du...
متن کاملGlutamate responses of bipolar cells in a slice preparation of the rat retina.
Whole-cell currents from >70 voltage-clamped bipolar cells were recorded in a slice preparation of the rat retina. The recorded cells were identified and classified by intracellular staining with Lucifer yellow. Glutamate, the specific agonists (+/-)-2-amino-4-phosphonobutyric acid (AP-4) and kainate (KA), and the antagonist 6-cyanoquinoxaline-2,3-dione (CNQX) were applied. The cells could be i...
متن کاملGABAC receptor-mediated inhibition in the retina
Inhibition at bipolar cell axon terminals regulates excitatory signaling to ganglion cells and is mediated, in part, by GABAC receptors. We investigated GABAC receptor-mediated inhibition using pharmacological approaches and genetically altered mice that lack GABAC receptors. Responses to applied GABA showed distinct time courses in various bipolar cell classes, attributable to different propor...
متن کاملDevelopmental Regulation and Activity-Dependent Maintenance of GABAergic Presynaptic Inhibition onto Rod Bipolar Cell Axonal Terminals
Presynaptic inhibition onto axons regulates neuronal output, but how such inhibitory synapses develop and are maintained in vivo remains unclear. Axon terminals of glutamatergic retinal rod bipolar cells (RBCs) receive GABAA and GABAC receptor-mediated synaptic inhibition. We found that perturbing GABAergic or glutamatergic neurotransmission does not prevent GABAergic synaptogenesis onto RBC ax...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 79 3 شماره
صفحات -
تاریخ انتشار 1998